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Abstract

In [2] the chain-ladder method is carried out based on the assumptions that
the increments and therefore the claim amounts are strict positive. The chain—
ladder method considered here shows the necessary and sufficient condition
when zero increments are allowed. Stochastic models underlying the determin-
istic method and the non-parametric model of Mack are described under this
condition.

Furthermore the extension of the chain-ladder method to m subportfolios
is described. The multivariate chain-ladder method consisting of n conditional
linear models corresponding to the development years is described.

1 Introduction

Let Cjx with j,k € {0,1,...,n} denotes the cumulative claim amount (plus
estimated reserves) of accident year j and development year k. Obviously, the
index

j €{0,1,...,n} refers to accident years (rows),

k€ {0,1,...,n} refers to development years (columns)
and the Cj}’s are observable for j + k < n and non-observable for j + k > n.
For 7 + k = n we call it the actual cumulative claim amount and for k = n it
is called the ultimate cumulative claim amount. Besides the cumulative claim
amount C}j. we often consider the incremental claim amount I defined by

I — Cj,D for k = 0, (l)
ik - Cj,k - Cjﬁ-] for k € {l, . .,n}

and note that

k
Cik =ij,z= i k€ {0,1,...,n}. (2)
1=0
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The I} can be interpreted as the amount to be paid in development year k
for claims of the accident year j, plus the change in the estimated reserves for
individual claims.

Assumption 1.1 In the following we consider n+ 1 accident years and assume
that each claim is either fully settled in the accident year, where the claim
occurred, or in one of the following n development years.

Assumption 1.2 We assume throughout that Cj ; is non-negative for all j, k €
{0,1,...,n}, but it may happen that I;j is negative for some j € {0,1,...,n}
and k € {1,...,n} due to estimated reserves for individual claims which turn
out to have been too high.

2 Chain—Ladder Method

Consider a portfolio which is described by a family {C; }j,ke{o,l,...,n} of random
variables, where Cj ;, denotes the claim amount (including estimated reserves for
individual claims) of accident year j and development year up to k. We assume
that the Cj are currently observable for j +k < n and are non-observable for
j+k >nwith j,k € {0,1,...,n}. The method is a simple modification of the
chain-ladder method described in [2].

Chain—ladder method:

For every accident year j € {0,1,...,n}, the chain-ladder predictor
of the expected claim amount is defined by

C‘CL .= Cj,ﬂ—j H?:n—j—f—lﬁ fOT'k - n_.? + l}"'jns (3)
7 Cjn—j fork=mn—j,

where the so-called age-to-age factor fk is defined by

1 if S F O =0,
fr=1R vrko, . i_(:c . (4)
sikens ¥ Xjmo Cik-1>0,
i= =

for every development year k € {1,...,n}. The chain-ladder re-
serve of accident year j is defined by

R{Y = G5 = Cjn-j (5)

Jor j € {0,1,...,n}, ‘where adding up the values yields the global
chain-ladder reserve RV for all accident years, i.e.,

RO = 3 RO (6)
j=0
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3 Stochastic Chain—Ladder

3.1 Introduction

The history of innovation in claim reserving has usually meant getting better
predictors of the expected values of future payment amounts. Less effort had
been spent on estimating the distribution of results around the expected value.
However, recent discussions of new regulatory and accounting standards have
changed the focus to stochastic reserving — the creation of these distributions,
remembering, of course, that these distributions are themselves estimates.

Stochastic methods will not and should not replace traditional actuarial
methods for claim reserving, but they will provide critical information for mak-
ing a variety of management decisions.

There has been a large number of papers investigating the statistical ba-
sis of the chain—-ladder technique, which have made significant advances in the
understanding of the chain—ladder method. The aim of this section is to bring
these together in a convenient form, and to show how extensions to the mod-
els are possible. In this Master thesis we will only consider models for the
chain—ladder method — but there are also others, for example linear models
or credibility models. For further information to linear and credibility models
see [4].

3.2 Multiplicative Model for Increments

The multiplicative model gives a first justification of the chain-ladder method.
The model is carried out following [2].

3.2.1 Multiplicative model

There exist parameters ap, a1, ...,an € [0,00) and Jo,V1,...,9, €
R, satisfying

T
D k=1, (7)
k=0
such that the increments of the run-off square satisfy
ElL k] = ajvx (8)

for all j,k € {0,1,...,n}.

Remark 3.1 We get the identities

n—j n—j
> =Y Elljx]  forallje{0,1,...,n} (9)
k=0 k=0

and
n—k n—k
> itk =Y E[ljx] forallke{0,1,...,n}. (10)
=0 =0
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3.2.2 Parameter estimation

To estimate in (8) the unknown parameters ag, aq, ..., a, and 9y, V4, ..., 9, we
consider random variables &g, @1, ..., &, with values in [0, c0) and real-valued
190,?91, . ..,197; Wlth

219;; = 1.
k=0

(11)

These random variables are said to be marginal-sum estimators of the param-

eters ap, ay,...,a, € [0,00) and Yo, 91,...,9, € R if they solve the marginal
equations
n—j n—j
& = )Y Ij, forje{0,1,...,n} (12)
k=0 k=
and
n—k X n—
('i:j‘lgk= Ij,k for k € {0,1,...,%}. (13)
j=0 j=0

Notice that the equations (12) and (13) have the same structure as the equations
(9) and (10), therefore the marginal-sum principle is here a rather natural one.
The following theorem gives a satisfying result according to the existence and
uniqueness of the marginal-sum estimators.

Theorem 3.2 Let ao, Gy, ...,0, be [0,00)-valued and Do, 91, ..., Up be real-
valued random variables satisfying (11). We assume that Cyp,, > 0.

1. If Z;?;g—lcj,k >0 for k € {1,...,n — 1} and if éo,é,...,é, and

99,01, ..., 0, are marginal-sum estimators, then
& = Ciy (14)
forall j € {0,1,...,n} and
. a k=
g, =160 Jor k=0, (15)
Gr—Gr—1 forke{l,...,n},
where Gy, for k € {1,...,n} is defined recursively by
1 for j =0,
A ) E Gy ; £ -l |
Gn—j = SI-T ¢GU forje{l,...,n}if 352 Cin—y >0, (16)
Gn—j+1 forje{1,...,n}if Y1) Cinej=0
with
69U .= Ginzi (a7)
’ Gn_-?

forall j € {0,1,...,n}.
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2. If (14) and (15) are fulfilled, then &o,é,...,4&, and Do, V1, .., 0n are

marginal-sum estimators.

The marginal-sum estimators exist and are unique.

3.3 Poisson Model
3.3.1 Poisson model

1. The family {I;1};kefo,,..,n} @ independent.

2. There exist parameters ag, a1, ..., an € [0,00) and Yo, V1, ...,y €
R, satisfying
"
S g1,
k=0

such that
L(1; ) = Poi(a;d) (18)

holds for all j,k € {0,1,...,n}.

3.3.2 Parameter estimation
In the Poisson model the joint distribution of all increments is given by
ki T Qj 19 )
P[ﬂ (k= ijfk}} H H( e T ) (19)
=0 k=0 §=0 k=0 ok

To estimate the unknown parameters og, oy, ..., ay, and 99, 91,...,9, we use
the maximum-likelihood principle.
Out of (19) we can build the liklihood function

PR . n n-j (o0 )ik
L(d'[hafl:'"}&nsﬁosﬁla'“:ﬁn) ::HH(e_ajﬁkM)'

=0 k=0 Ij!
So we get for the log-likelihood function
log L(do, &1, .. , G, o, V1, . .., Un) (20)
n_ n—j
Z a;U) + Ik log(a;dk) — log(I;k!)). (21)
7=0 k=0

Taking the derivatives with respect to &; and Ok respectively yield

d(log L) . P P _n_J . 1
3‘1‘? (a[]:als-":ansﬁch??l}'--sﬁﬂ)_kzzo llgk—l_fj,k&_j

log L - Lk 1
8( Oig )(dokdls"'}énsﬁﬁsﬁh"'sﬂn):Z(_dfj'l'fj,kﬂ_)'
3=0 Uk
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These yield maximum-likelihood estimates of &j:@k with 5,k € {0,1,...,n}
satisfy the following relations

n—j I n—j n—j

~ — j?k ~ a —

aj = 5 — O:j’t?k - IJ,}C (22)
k=0 Yk k=0 k=0
n—k n—k n—k

" Ij,k o

Y = d_ — j"'-gk - Ij k (23)
j=0 7 j=0 j=0

Remark 3.3 Due to (22) and (23) the estimators é‘ej,@k of aj, vy fulfill the
marginal-sum equations (12) and (13). Therefore Theorem 3.2 also holds for
the Poisson model.

3.4 Non-Parametric Chain—Ladder

In the multinomial model a special distribution of the I is assumed, but the
I ;. can also be modeled in a non-parametric form, which yields the estimation
fr defined by (4) for k € {1,...,n}and C’j‘k defined by (3) for j,k € {0,1,...,n}
with j + k > n + 1, irrespective of the distribution of the I;;. The model will
be carried out following [1].

Throughout this section all equalities involving conditional expectations are
understood to hold almost surely with respect to the probability measure P.
We will carry out this study under the following assumptions.

Assumption 3.4 There exist parameters f1,..., f, € [0,00), such that
E[CjklCjos- -+ Cik—-1] = Cjp-1fk
holds for all j € {0,1,...,n} and k € {1,...,n}.
Assumption 3.5 The variables ;. of different accident years, i.e.
{Cj0,-..,Cjn}, {Cio,...,Clpn} for j # l are independent.

Assumption 3.6 The random variables are square-integrable and there exist
unknown parameters o?,...,02 € [0,00) such that

Var[Cj,HCj,g, eesy Cj,k—]] = Cj,k_lo'ﬁ,
for all j € {0,1,...,n}, k€ {1,...,n}.

Assumption 3.7

1
Cijr >0 for every development year k € {0,1,...,n — 1}.

n—

k—
J=0
Assumption 3.8 For every j € {0,1,...,n} and k € {0,1,...,n — 1} with
J+k < n we assume Cjj > 0.
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The following theorem shows, that 3.4 and 3.5 are indeed the suitable assump-
tions for the chain-ladder method.

Theorem 3.9 Let A = {Cjr|j+k < n} be the set of all data observed so far.
Under the assumptions 3.4 and 3.5

E[CjnlA] = E[C}x|Cjp,- - -, Cjn—j]
= Cj‘?t—j . fn—j-i—l s .f'n
holds for all j € {1,...,n}.

The next theorem shows another consequence of 3.4 and 3.5, namely the uncor-
relatedness and unbiasedness of the estimators fi, fo, ..., fn of fi, fo,. ., fa-

Theorem 3.10 Under the assumptions 5.4, 3.5 and 3.7 the age-to-age factors
fis-. -y fn, defined by (4), are unbiased and uncorrelated.
Calculation of the mean squared error

The aim of the chain—ladder method and every other claim reserving method
is to give a forecast of the ultimate claim amount Cj, for the accident years
j=1,...,n. All these methods only yield a point estimate for C;, which will
normally turn out to be more or less wrong. Therefore it will be of great interest
to determine the mean squared error mse [éjn] of the predictor Cj,, of Cjp,
which is defined by

A A 2
mse [Cj,n] — E[(Cj,n = Oj,n) |A:|, (24)
where A = {Cj|j + k < n} is the set of all data observed so far.

Theorem 3.11 Under the assumptions 3.4, 3.5, 3.6 and 3.7

1. the estimator &;25 of 02, given by

n—k
= —= > Cisn Gk _ 1) (25)
k n—kj:[) G Cjik—1

for ke {l,...,n— 1}, is unbiased and

2. the mean squared error mse [RJ] for j € {1,...,n} can be estimated by
A i n 6-2 1 1
mse[R;] = CF T"( — = )
" k=-nz—:j+1 flg Oj,k—l Z‘Lé‘ Oh,k—l

where Cj,k_l = C.-‘,,,_J-fn_j.,.l---fk_l for k > n — j are the estimated
values of the future Cjp_1 and Cjp_j = Cjpn_j.

Remark 3.12 In (25) the estimator 67 of o7 is only given for k € {1,...,n—1}.
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o If f,,, = 1 and if the claims development is assumed to be finished after n

years, 62 can be assumed to be zero.

e Otherwise an estimator of o2 can be obtained by extrapolating the se-
ries 01,...,0,-2,0p—1 by one further member. In [1] Mack proposes one
possibility to do this, namely he requires that

On—2 _ On-1

On—1 Tn

holds at least for 6,,_9 > 6,_1. Therefore ¢, can be estimated by

54
62 = min —— min(62_5,62_,) |.
Op—2

Theorem 3.13 Under assumptions 3.4, 3.5 and 3.6 the mean squared error of
the predictor

R=Ri+ - +R,

for the global reserve

R=Ri+---+Ry,

can be estimated by

@[R]:f(mse[ﬁj]mj‘n(fj ég,n) 3 %) (26)

j=1 I=j+1 k=n—j+1

4 Multivariate Methods

4.1 Notation
Let m € N be the number of subportfolios and for p € {1,...,m}

(p)
Cik
denotes the ultimate claim size of accident year j € {0,1,...,n} and develop-
ment year k € {0,1,...,n}. Furthermore, let
()
= Cik
L ()
O_:.'k 1
denote the individual development factor of accident year j € {0,1,...,n} and
development year k € {1,...,n}. We will carry out this model under the
assumption that all C( P 0 for j,k€{0,1,...,n} and p € {1,...,m}.

(v)

Analogous to the case of one run-off square the C’ . are observable for j+k<n
and non-observable for j + k > n. For j, k € {U 1,...,n} we thus obtain the
m-~dimensional random vector of ultimate claims

C(”
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and -
f j‘ k
=\ i
(m)
Fi
is the m-dimensional random vector of individual development factors. We con-

sider a model involving successive conditioning with respect to the o-algebras
Go,G1,...,Gn-1, where for each development year k € {1,...,n} the o-algebra

Gr—1

represents the information provided by the claim amount Cj;, with j € {0,1,...,
n—k+1}and !l € {0,1,...,k—1}.
In the following it is better to represent the random vector Cj; by the diagonal

matrix
(1)
Cj-‘k 0
T r, := diag(Cjx) =
(.
0 oy
Obviously,
Cix= Tig I

holds for all j,k € {0,1,...,n}, where I is the vector in R™ with all coordinates
being equal to 1. Furthermore

Cik = Tjk-1 fik (27)

holds for all j € {0,1,...,n} and k € {1,...,n}.

4.2 Assumptions

For each development year k € {1,...,n}, there exist a G_;-measurable, m-
dimensional random vector f; and a random matrix Vi, which is symmetric
and positive definite, such that

E[C;k|Gk-1] = Tjr-1fx (28)

and

1

1 1
Var[Cj,k|Qk_1] = Ij:.-'?k—l Vij?k—] (29)
holds for j € {0,1,...,n}, k € {1,...,n} and
CD\’(Cj‘k,Cg’klgk_l) =0l (3(])

holds for 7,1 € {0,1,...,n} with  # j.
In the following we assume that the assumptions of Subsection 4.2 are fulfilled.

'0 denotes the matrix in B with all coordinates being equal to 0.
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4.3 Multivariate chain—ladder method

The chain-ladder method proposed in Section 2 is defined as an algorithm
without an underlying stochastic model whereas the multivariate chain-ladder
method presented now is based on a stochastic model. The following multivari-
ate chain—ladder method consists of n conditional linear models corresponding
to the development years k € {1,...,n}. To understand the multivariate chain—
ladder method in [3] Schmidt gives a good justification. For a fixed development
year k € {1,...,n}, let C denote a block vector consisting of the random vector
Cjk, with 7 <n —k and let A; denote a block matrix consisting of the random
matrices T}y, with j < n + k. Furthermore let

Cy := Crp—k+1,k
and
Az =Ty gy1k-

Then the random vectors C and Cs and the random matrices A; and As depend
on the development year k and we have

E[C1|Gk-1] = A1 fx
E[C2|Gk—1) = Az fi.

Thus, the multivariate chain—ladder model consist indeed of n conditional linear
models.

Multivariate chain—ladder method:

Under the assumptions of Subsection 4.2 the multivariate chain—
ladder method is defined by

ACL . or
Cin=j = Cin—j

forall j € {1,...,n} and

n—k 1 i 1n—k 1 i
FCL 3 13 3 13 -1 )
k= (§ :I},k—1Vk Tj,k—l) (Tj,k—lvk Tj,k—l)Tj,k—lcy,k
j=0 j=0

forall k € {1,...,n} as well as
Ok o= T | O

Tik = diag (Cfi )

forall 3,k € {1,...,n}, with j + k > n.
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